Zeta functions of a class of elliptic curves over a rational function field of characteristic two
نویسندگان
چکیده
We show how to calculate the zeta functions and the orders |X| of Tate-Shafarevich groups of the elliptic curves with equation Y 2 + XY = X3 + αX2 + const · T−k over the rational function field Fq(T ), where q is a power of 2. In the range q = 2, k ≤ 37, α ∈ F2[T−1] odd of degree ≤ 19, the largest values obtained for |X| are 472 (one case), 392 (one case) and 272 (three cases). We observe and discuss a remarkable pattern for the distributions of signs in the functional equation and of fudge factors at places of bad reduction. These imply strong restrictions on the precise form of the Langlands correspondence for GL(2) over local or global fields of characteristic two.
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کاملar X iv : 0 90 3 . 20 24 v 1 [ m at h . A G ] 1 1 M ar 2 00 9 SCHEMES OVER F 1 AND ZETA FUNCTIONS
We develop a theory of schemes over the field of characteristic one which reconciles the previous attempts by Soulé and by Deitmar. Our construction fits with the geometry of monoids of Kato and is no longer limited to toric varieties. We compute the zeta function of an arbitrary Noetherian scheme (over the field of characteristic one) and prove that the torsion in the local geometric structure...
متن کاملSchemes over F1 and Zeta Functions
We develop a theory of schemes over the field of characteristic one which reconciles the previous attempts by Soulé and by Deitmar. Our construction fits with the geometry of monoids of Kato and is no longer limited to toric varieties. We compute the zeta function of an arbitrary Noetherian scheme (over the field of characteristic one) and prove that the torsion in the local geometric structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999